

Optical Kerogen Analysis

Optical Kerogen Analysis – Methods

geochemical analysis

- widely used in industry for kerogen analysis & HC potential
- based on interpretation of chemical parameters - mainly H- & O-content (RockEval) and biomarker
- based on bulk rock samples, unable to identify mixed kerogen (composition, maturation, preservation),
- effect of mixed kerogens on chemical parameters not understood yet
- depending on the kerogen mix chemical parameters can mislead HC interpretation

optical analysis

- often used in academic research (palynology / palynofacies)
- kerogen is isolated from the rock and directly studied under the microscope
- identifies mixed kerogen (composition, preservation & maturation)
- component specific quantification of kerogen composition, preservation & maturation for improved HC potential analysis
- optical kerogen analysis data can be implemented into organofacies based HC system modeling directly

Optical Kerogen Analysis – Methods

Optical Kerogen Analysis is focused on:

Kerogen composition

- composition refers directly to the type of HC's, primary generated from source rocks.
- quantification of different types of organic matter (organofacies) and correlation to kerogen types

Kerogen Preservation

- information on HC generation from Kerogen
- HC generation causes increasing degradation poor to very poor preservation typical for high potential source rocks

Kerogen Maturation

- Information if source rocks are productive or not (immature, overmature)
- Based on vitrinite reflectance analysis & palynomorph colour indices

TOC analysis - for analysis of HC-quantity

Optical Kerogen Analysis – Kerogen composition

Identification & quantification of different groups of organic matter in the slide

Transfering quantities of palynological groups into HC relevant kerogen types

	Palynological Kerogen Classification	Organic Matter	Hydrocarbon Potential	Kerogen type
	AOM Cutinite	AOM (sensu strictu), algae, bacteria, phytoplankton	Very high oil potential	1
	Cutinite	mainly terrestrial palynomorphs, plant tissues, (phytoplankton)	High oil potential	11
3	100	mainly woody	Low oil potential	
	Vitrinite	plant debris (of higher land plants)	High gas potential	III
		highly carbonized	Very little – no	
	Inertinite	opaque, inert	hydrocarbon	IV
	· .	organic matter	potential	, ,

Optical Kerogen Analysis – Kerogen composition

- Quantification of all kerogen types in each sample
- Quantification of productive vs. unproductive kerogen
- Quantification of oil-prone vs. gas prone kerogen
- Development of detailed kerogen composition within source rock unit

Optical Kerogen Analysis – Kerogen preservation

- primary degradation: microbial & chemical,
- secondary degradation related to maturation
- maturation related degradation indicates level of hydrocarbon generation from actual kerogen
- preservation is directly linked to microporosity in organic matter
 ≈ storage capacity for shale gas

Optical Kerogen Analysis – Kerogen maturation

- high-resolution VR analysis based on digital image analysis
- transfering greyscales into VR data
- precise VR measurements on small vitrinite grains down to pixel-size, depending on image resolution
- optical control of analysed particles (type of kerogen, preservation...)

Optical Kerogen Analysis – Kerogen maturation

- Intgrated maturation analysis
 VR & color indices
- Palynomorph color indices (TAI, SCI) are additional methods - first estimates of maturation
- Vitrinite availability limited by stratigraphy (post-mid Silurian) and lithology/ facies
- SCI/TAI analysis when vitrinite is not available & for chross-check of VR data
- combination of VR & TAI/SCI for maximum accessibility and reliability of maturation data

Case Study I Paleozoic shales in Europe potential unconventional HC-plays

Paleozoic Shales - SE-Poland

- southern Holy Cross Mts.
- Lower Middle Silurian
- Dark/black organic rich shales, partially limestone nodules, rich in graptolites
- Total thickness: 15m (Llandovery)
 45m Wenlock
- TOC (old): 1-2,5% (residual, 2-5% initial)
- Maturity (old): *VR* > 1,3%

Paleozoic Shales - SE-Poland

TOC mostly poor (<2%)
Kerogen varies, mainly type III
Tmax – 440, middle oil window

'VR' – 0,5% (base oil window), SCI 3-4 lower oil window

Kerogen I, II & IV, mainly graptolite remains, no type III - graptolite HC potential

Preservation moderate, no HC generation yet

Paleozoic Shales - North German Basin

- SW North German Basin
- Upper Devonian Frasnian black shales,
- Lower Carboniferous lower alum shales
 (Tournaisian) & upper alum shales (Namurian)
- Dark/black shales, partially marlstones & limestone interlayers, rich in C org & pyrite
- Total thickness: 25m (>100m Basin) UAS
 2-5m (50m basin) LAS
 30-50m Devonian FBS
- TOC (old): 2,5-8% LAS, 0,8-2,5% UAS
- Maturity (old): VR = 2,5-3%

Upper Alum Shales - N-Germany

Lower Alum Shales - N-Germany

Paleozoic Shales - North German Basin

TOC poor to moderate

Devonian kerogen I/II

Carboniferous kerogen III/IV

Devonian Tmax – 440 (oil window)

GEORESOURCES Steinbeis-Transfer Centre Devonian FBS: kerogen III dominated

Carboniferous: kerogen II/III (LAS)

kerogen I/III (UAS)

Maturation mainly in gas window

Preservation: slightly to hardly degraded

Case Study II Lower Jurassic of Southern Germany

Lower Jurassic – S-Germany

temporarly strongly euxinic conditions (from the basin centers to marginal areas) all studied wells are placed in area, which is assumed to be (euxinic) - central basin facies

Lower Jurassic - S-Germany

Potential source rock units

All studied intervals are mainly made of dark to black, marl- to mudstones, rich in pyrite varying proportions of limestones in different shale intervals (e.g. Lias α / Lias ϵ), but also within one unit in different localities

partially highly frequent changes between euxinic and oxic conditions (bioturbation)

Lower Jurassic – S-Germany

High TOC: 5-12% (≤ 2% Lias a)

Lias e: kerogen I (- II)

Lias a: kerogen II (– III)

Maturation: middle oil window (SCI)

Lias e: dominated by kerogen I, minor kerogen II (IV)

Lias a: high amounts of kerogen I & II, minor kerogen IV, no kerogen III

Lias a/e: poor preservation, high HC generation

Optical Kerogen Analysis - Benefits

- detailed quantification of each single kerogen type within the total kerogen
- quantification of productive vs. unproductive proportions of the total kerogen
- quantification of oil-prone vs. gas-prone kerogen within the productive kerogen
- detailed analysis of preservation of each kerogen type estimation of HC generation from oil-prone and gas-prone parts of kerogen
- high-resolution analysis of organic maturation by two independent methods
- detailed palaeothermal history and HC maturity
- identification of different kerogens with different HC potential mixed within the total kerogen

